Explaining the declining labor supply responsiveness of married women

Zhiyang Jia, Thor O. Thoresen, Trine E. Vattø

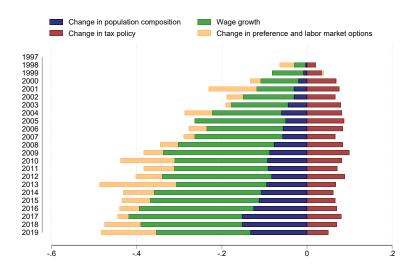
Statistics Norway

Inst. of Pub. Finance, 9 October 2024

Background

- Consensus: the labor supply response of married females are more responsive than that of married males
- But some studies find that the labor supply responses of married females are approaching those of married males
 - Blau and Kahn (2007); Heim (2007)
- Explanations to the response decline for married females
 - More career orientation (Blau and Kahn, 2007; Goldin, 2006, 2014)
 - Heim (2007): small effect of changing demographic characteristics
 point to preference shifts
- But no studies have systematically discussed causes behind the decline
- Information on responses important for policy-making

Contribution of the paper


- Do we see declining female responsiveness in Norway too?
 - Repeated estimations of structural discrete choice model 1997–2019 used to obtain (simulated) wage elasticities
- Explaining the downward trend in elasticities
 - Use the repeated cross-sectional evidence and decomposition procedure to discuss explanations
 - Discuss effects of demographic composition change, wage rate growth, tax policy change, preference shift and change in opportunities in the labor market
- Show results for the Hicksian elasticity too
 - A challenge to obtain Hicksian elasticities by discrete choice model

周レイテレイテレー

Preview of results

- We find a clear decline in the Marshallian (average) elasticity of married females
 - ▶ Down from approx 0.7 in 1997 to below 0.3 in 2019
 - Still it is above married males stable at around 0.1
- Wage rate growth is the most important explanation to the decline
- Hicksian elasticity shows a decline too

Preview of main result

・ 同 ト ・ ヨ ト ・ ヨ ト

Overview of presentation

- Presentation of the discrete choice labor supply model
- Description of the decline in the responsiveness of married females
- Results of procedure to obtain explanations to the decline
- Evidence for the Hicksian elasticity

A discrete choice labor supply model is used

∃ ► < ∃ ►</p>

Controversy concerning structural models

- Concerns about model's ability to generate robust predictions
 - An influential paper by LaLonde (1986) demonstrated the weakness of "econometric evaluations"
- Quasi-experimental research designs have become popular
- Discussion in the literature about advantages of different approaches involving influential people
 - Angrist and Pischke (2010); Heckman (2010); Deaton, 2010
 - Imbens (2010): "Better LATE than nothing"
- In the Norwegian policy-making context
 - Policy-makers access to simulation results by structural labor supply model – the model presented here
 - Are in the process of establishing a simulation device based on "external evidence" too – incl estimates from quasi-experiments

伺い イラト イラト

Discrete choice labor supply models

- Departs from random utility model as a basis for discrete choice modeling (McFadden, 1984, 2001)
- A discrete choice of working hours
 - Choose between (0-5, 5-10, 10-15, ..., 50-55)
- Discrete choice labor supply model based on stochastic utility theory (van Soest, 1995; Aaberge et al., 1995) have become popular in practical work
 - Practical tool to deal with nonlinear and non-convex economic budget constraints

伺 とくき とくき とうき

A particular discrete choice model – the job choice model (Dagsvik, 1994; Dagsvik et al., 2014)

- Agents have preferences for consumption (*C*), working hours *h*, and type of job (*z*)
- The job choice model builds on agents choosing a job *z* within a discrete alternative,
- Individual preferences: $U(C,h,z) = v(C,h) + \varepsilon(z)$ where v is a deterministic part and $\varepsilon(z)$ is a random variable
- Economic budget constraint (*w*=wage, *I*=non-labor income, T=tax): $C = wh + I - T(wh, I) \equiv f(wh, I)$

< ロ > < 同 > < 三 > < 三 > 、 三 > 、 三 < つ < へ</p>

The job choice model, cont'd

- The terms {ε(z)} are assumed to be i.i.d. across individuals and across jobs for given h with the Gumbel cumulative distribution function
- Sources of uncertainty
 - Unobservable attributes, unobservable individual-specific characteristics, measurement errors, functional misspecification, bounded rationality, etc

Job choice model, cont'd

B(h) denotes the agent's set of available jobs with hours of work h

Agent chooses job z in B(h) if the utility of this job, $v(f(hw,I),h) + \varepsilon(z)$, is higher than (or equal to) the utility of all other jobs/options available

Job choice model, cont'd

We are interested in the probability that the agent shall choose any job within B(h), $\phi(h)$, obtained by summing the choice probability over all alternatives within B(h)

$$\phi(h) = \sum_{z \in B(h)} \frac{\exp(v(C,h))}{\sum_{x \in D} \sum_{z \in B} \exp(v(C,h)) + \exp(v(C,h))}$$

Introducing the number of options in the labor market m(h)

$$\varphi(h) = \frac{\exp(\nu(C,h))m(h)}{\exp(\nu(C_0,0))m(0) + \sum_{x \in D} \exp(\nu(C,x))m(x)}$$

Allows the researcher to account for latent restrictions in the labor market

Job opportunity measure, m(h), is key part of the job choice model

 $m(h) = \theta g(h)$, where θ is the total number of jobs available to the agent, depending on education level

When *S* is years of education, we have $\log \theta_k = \gamma_{k1} + \gamma_{k2}S$ (k = F, M)

g(h) is the fraction of jobs available to the agent with offered hours of work equal to h, uniformly distributed, except peaks for full-time and part-time

 $m(h) = \theta g(h)$ is estimated jointly with the utility function

Box-Cox functional form for the deterministic part of the couple utility function

$$\log v(C, h_F, h_M) = \beta_C \left(\frac{\left[10^{-4} \left(C - C_0 \right) \right]^{\alpha_1} - 1}{\alpha_1} \right) \\ + \left(\frac{\left(L_F \right)^{\alpha_F} - 1}{\alpha_F} \right) X_F \beta_F + \left(\frac{\left(L_M \right)^{\alpha_M} - 1}{\alpha_M} \right) X_M \beta_M \\ + \beta_{MF} \left(\frac{\left(L_M \right)^{\alpha_M} - 1}{\alpha_M} \right) \left(\frac{\left(L_F \right)^{\alpha_F} - 1}{\alpha_F} \right)$$

JTV (Statistics Norway)

ヨトィヨト

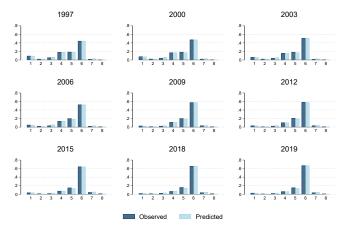
Two-step procedure – estimation by cross-sectional data

- Assign a predicted wage rate to each individual based on a Mincer wage regression (OLS)
 - Wage rate determined by education, experience and civil status
 - Random draw of error term in the wage equation (30 draws)
- Estimate the parameters of the utility function and the job opportunity measure by maximum likelihood estimation (MLE)
 - ▶ g(h) is a latent variable that is estimated simultaneously with the deterministic part of the utility function

Data and estimation

- Estimate the model for each year, 1997–2019
- Data from Labor force survey and Income and wealth statistics for households
 - Married couples
 - ► Age 26–62
 - Exclude self-employed/unemployed/students/disabled
- Use a detailed tax-benefit calculator to describe disposable income in the discrete choices
 - Couples have 8 × 8 combinations, but no category for nonwork for males

Estimation results


references	Parameter	Estimate	Std Error
onsumption			
ponent	α_1	0.7813	0.076
ale 10 ⁴	α_2	0.6453	0.208
bsistence	C_0	40,000	
male leisure			
ponent	α_3	-1.6194	0.416
onstant	α_5	6.2556	3.201
og(age/10)	α_6	-5.4935	3.676
og(age/10) squared	α_7	1.9800	1.315
 children under or equal to 6 years 	α_8	0.2142	0.117
 children over 6 years 	α_9	0.1136	0.070
ale leisure			
ponent	α4	-0.4285	5.618
onstant	α_{10}	0.9190	7.993
og(age/10)	α_{11}	-0.9472	2.735
g(age/10) squared	α_{12}	1.6682	0.444
 children under or equal to 6 years 	α_{13}	0.2206	0.241
 children over 6 years 	α_{14}	0.0084	0.149
isure interaction	α_{15}	0.6459	0.445
isure subsistence	L_0	5,110	
bor market options: females			
onstant	γ_{F1}	0.1650	1.474
lucation	γ_{F2}	0.4560	0.536
abor market options: males			
onstant	ΥM1	1.9703	1.891
lucation	YM2	1.3481	0.705
pportunity density of hours offered			
ale full-time peak		2.6345	0.114
male full-time peak		1.5225	0.103
ale part-time peak		-0.1314	0.286
male part-time peak		-0.1677	0.125
umber of observations		1,619	
og likelihood		-2,983.8	
cFadden's ρ^2		0.55	

JTV (Statistics Norway)

э Inst. of Pub. Finance, 9 October 2024 18/47

Goodness of fit

Observed and predicted labor supply behavior for married females

< A

★ ∃ > < ∃ >

A little detour on practical use of the model

-

Job choice model part of the microsimulation models to assist tax policy-making

- The labor supply is part of the microsimulation models of the LOTTE-system
 - Labor supply module named LOTTE-Arbeid
 - Connected to the non-behavioral microsimulation model LOTTE-Skatt
- Job choice model estimated for a smaller sample (than the LOTTE-Skatt sample) because of information on working hours
- Advantageous to simulate labor supply effects for same data set as in LOTTE-Skatt
 - Estimates transferred to the larger LOTTE-Skatt dataset based on imputation and common variables
- LOTTE-Arbeid less used than LOTTE-Skatt in policy-making

Use of model in the Norwegian budget process

Tax change	Self-financing ratio, pct
Reduced rate bracket tax, bracket 3	10
Increased threshold bracket tax, bracket 3	9
Reduced rate ordinary income	6
Reduced rate social insurance tax	5
Reduced rate bracket tax, bracket 2	4
Increased threshold bracket tax, bracket 2	2
Increased threshold for max. deduction in minimum stand. deduction	1
Reduced rate bracket tax, bracket 1	0
Increased threshold bracket tax, bracket 1	0
Increased personal allowance	0
Increased rate minimum standard deduction	-16

Description of the decline in the responsiveness of married women

A 3 - 5

Simulated labor supply elasticity

• The estimated models (one for each year) are used to simulate labor supply elasticities with respect to the wage rate

$$e^w = \frac{dh}{dw} \cdot \frac{w}{h}$$

• Report the Marshallian elasticity of the aggregate (average) response in working hours

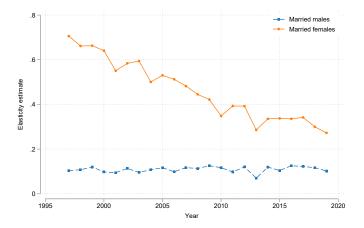
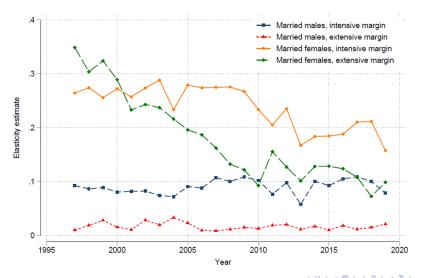

Elasticity estimates, 2019

Table A3: Gross wage Marshallian labor supply elasticities for individuals in couples, 2019


	Female	Male	Female	Male
	own wage	own wage	cross-wage	cross-wage
Participation (ext. margin)	0.099	0.021	-0.002	-0.006
Hours cond. on working (int. margin)	0.158	0.079	-0.047	-0.005
Total elasticity	0.273	0.102	-0.046	-0.010

A B > A B >

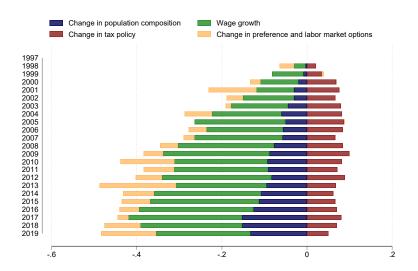
Declining labor supply elasticity of married women

Married men and married women – extensive and intensive margins

A procedure to obtain explanations to the decline

A 3 - 5

Explanations to the decline in elasticities

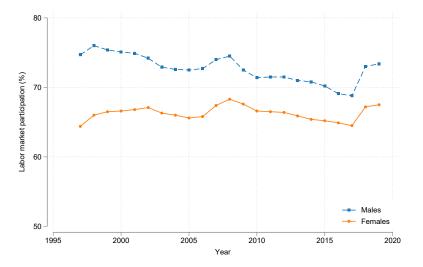

- Population composition change
- Wage rate growth
- Tax scheme change
- Preference shift and change in labor market opportunities merged into one category

Decomposition method – one specific sequence

- The labor supply elasticity in 1997 serves as the baseline, e_{1997}
- For a given year $t, t \in [1998, 2019]$, the method separates out effects of different explanations to the decline in response
- Step 1: Holding model parameters fixed to 1997 parameter, get wage elasticity set *e*_{*t*,1} for 1998–2019
 - Contribution due to sociodemograhic factors: $e_{t,1} e_{1997}$
- Step 2: Let the gross wage vary over time, $e_{t,2}$
 - Contribution due to the wage rate growth: $e_{t,2} e_{t,1}$
- Step 3: The tax scheme varies over time, $e_{t,3}$
 - Contribution due to tax schemes change: $e_{t,3} e_{t,2}$
- Step 4: Simulations results for full model, e_t
 - Identifies contributions from change in preferences and labor market opportunities: e_t - e_{t,3}

・ロト ・ 同ト ・ ヨト ・ ヨト

Decomposition results (Shapley procedure)

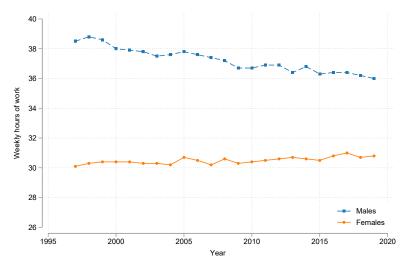


()

More about some potential driving factors

A 3 - 5

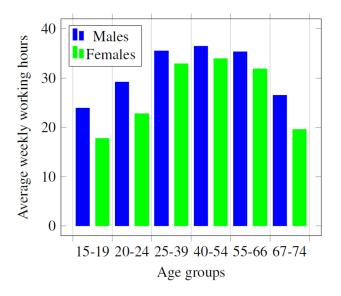
Gap in participation is narrowing


・ 同 ト ・ ヨ ト ・ ヨ ト

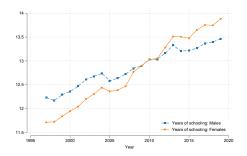
Increased participation and the decline in response

- Could argue that higher participation rates contributes to the decline in response
 - Smaller pools of people that can be incentivized to enter the labor force
- Hard to establish a causal relationship between participation and responses simultaneity

A B > A B >


Average female working hours stable (for those who work)

JTV (Statistics Norway)


・ 同 ト ・ ヨ ト ・ ヨ ト

Female working hours lower over the lifecycle

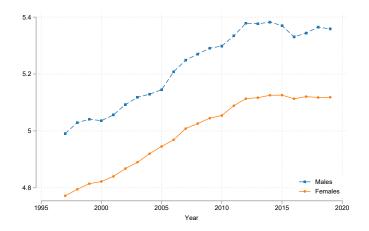
Change in female education

Females have increased their education above males

Change in education is reflected in three categories of explanations

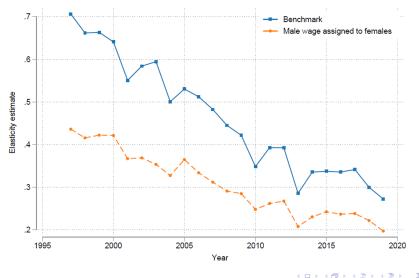
- Education is part of the population composition factor
 - Increased education levels enter into the wage regression (for fixed parameters)
- Wage rate growth a result of higher education
 - Parameter estimates of the wage regression change
- Education also influencing labor market opportunities

化压力 化压力

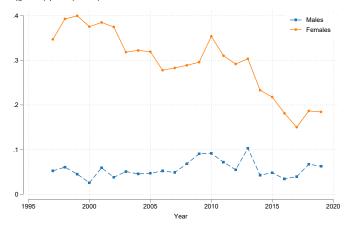

Elasticity estimates when married women's education levels are fixed at the 1997-level

JTV (Statistics Norway)

Explaining the declining labor supply responsivence Inst. of Pub. Finance, 9 October 2024 39/47


Log real wage rate (40 years old and 13 years of schooling)

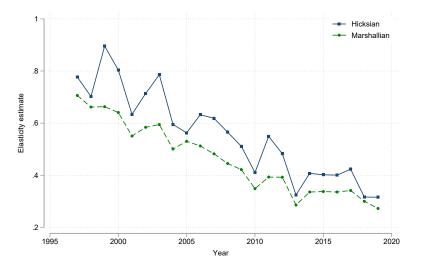
JTV (Statistics Norway)


きょうきょう

Elasticity estimates when women are given "male wages"

More full-time job opportunities

Estimated number of part-time jobs for each full-time job, m(part)/m(full)


Tax changes and the decline in response

- Marginal tax rates relatively stable over the period
 - A little reduction towards the end of the period
- Reduced rates may give larger responses
 - By definition of how the labor supply elasticities are calculated

Hicksian elasticity estimates – Dagsvik and Karlstrøm (2005)

A 3 - 5

Decline in the compensated elasticity too

くぼう くほう くほう

Concluding remarks

글 > : < 글 >

Summary

- Estimate a discrete choice labor supply model on cross-sectional data, for each year 1997-2019
- Find clear downward trend in the simulated labor supply elasticities for married females
- Important to have information on what influences responsiveness
 - To what extent is response subject to policy control (Slemrod and Kopczuk, 2002)?
- We decompose effects and results suggest
 - Wage rate growth is the most important contributor
 - Shift in preferences and labor market opportunities have small effect
 - Tax policy change contributes to larger response

伺い くさい くさい しき