

Forecasting Medical Inflation in the European Union Using the ARIMA Model

Enja Erker, MSc

Presentation of a research paper

published in Public Sector Economics

25.4.2024

Enja Erker Presentation of research pa

Introduction

- 2 Data base
- 3 Methodology
- Analysis of Medical Inflation in EU Countries
- **6** Results
- 6 Discussion
- Conclusion
- 8 References

Topic

As healthcare expenses continue to escalate globally, there is an increasing need to accurately comprehend and predict medical inflation

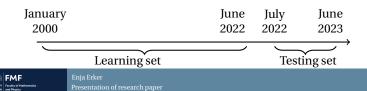
- governments national budget preparation,
- policymakers addressing challenges in proactive manner,
- healthcare providers startegic allocation of resources,
- insurers determination of appropriate premiums and models.

'Is the ARIMA model effective for forecasting medical HICP for European Union member states?'

Medical Inflation

Medical inflation represents the general level of price growth in healthcare procedures

- diagnostic tools, treatment methods, and pharmaceuticals,
- developed healthcare systems – higher levels of medical inflation,
- technological development and structural changes in healthcare systems,
- as a healthcare component within the Harmonized Index of Consumer Prices (HICP).


Data Source and Timeframe

Source: Eurostat Products:

- medical products, devices, and equipment,
- pharmaceutical products,
- pregnancy tests and contraceptive devices,
- therapeutic devices and equipment,
- corrective glasses, contact lenses, and hearing aids.

Services:

- outpatient services,
- medical and paramedical services,
- hospital services,
- physiotherapy services,
- dental services,
- services of medical laboratories and radiology centers,
- services of spas and health resorts,
- repair of medical and therapeutic equipment.

Methodology

The Autoregressive Integrated Moving Average Model ARIMA(p, d, q):

- statistical parametric model,
- analysis and forecasting of time series,
- p the number of lag observations,
 - the lag order of AR component,
- d the number of times the raw observations are differenced,
 - the degree of differencing,
- *q* the size of the moving average window,
 - the moving average order of MA component.

Analysis of Medical Inflation in EU Countries

Autocorrelation analysis:

 autocorrelation function
 partial autocorrelation function Exploratory analysis:

- · deviations from stationarity
- decomposition into trend, seasonal component and irregular component
 - stationarity tests
 - deseasoning
 - detrending

Spectral analysis:

periodogram
Fourier linear spectrum
periodicities

Enja Erkei

Test Forecasts

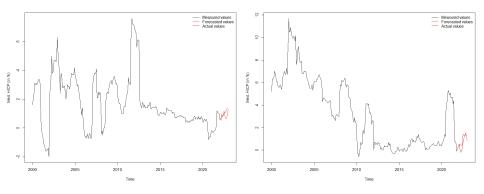


Figure 1: Test forecast - Italy

Figure 2: Test forecast - Ireland

Enja Erker Presentation of research paper

Actual Forecasts

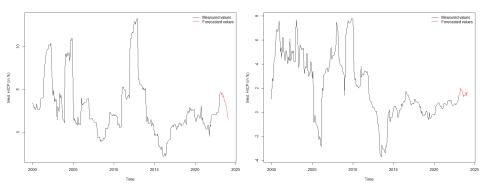
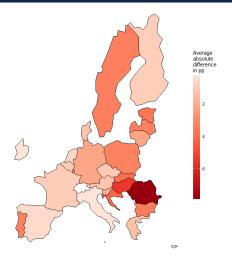


Figure 3: Forecast - Netherlands

Figure 4: Forecast – Cyprus

Enja Erker


Absolute Differences Between Forecasted and Actual Values of Medical HICP in pp

Member state	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Average
Austria	0.68	1.02	0.12	0.91	0.69	0.77	0.43	0.89	2.00	1.86	2.12	3.34	1.23
Belgium	0.06	0.25	0.25	0.30	0.33	0.63	0.82	1.07	1.16	1.30	1.48	4.07	0.98
Bulgaria	0.17	0.45	0.92	1.37	1.86	2.02	1.64	1.89	4.22	6.70	9.59	11.02	3.49
Croatia	0.28	1.38	2.14	2.27	2.48	3.66	5.06	5.67	6.12	6.28	6.59	8.17	4.18
Cyprus	0.09	0.14	0.66	0.41	0.46	0.33	0.02	0.11	0.06	0.08	0.47	0.12	0.25
Czechia	0.69	0.87	0.11	0.38	0.64	0.98	0.83	1.49	0.51	1.56	2.19	2.86	1.09
Denmark	0.72	0.69	0.43	0.12	1.35	1.03	1.02	0.69	1.71	1.92	2.67	2.71	1.25
Estonia	0.67	1.31	1.15	2.03	2.57	3.05	3.21	4.93	6.18	5.65	6.83	7.22	3.73
Finland	1.30	1.22	1.52	2.00	0.40	0.68	0.60	0.92	0.76	0.77	0.84	0.29	0.94
France	0.42	0.82	1.19	0.95	1.14	0.66	0.17	1.06	1.58	1.01	1.15	1.58	0.98
Germany	0.01	0.18	0.06	0.03	0.45	0.45	1.99	2.41	2.60	2.64	2.71	2.73	1.35
Greece	0.38	0.59	0.15	0.87	1.59	2.00	2.17	3.01	3.51	3.33	4.07	4.88	2.21
Hungary	0.20	0.00	0.51	1.26	2.17	3.48	5.25	6.95	9.34	11.16	12.75	12.64	5.48
Ireland	0.11	0.59	0.64	0.38	0.38	0.73	0.34	0.01	0.06	0.14	0.13	0.01	0.29
Italia	0.04	0.16	0.08	0.15	0.03	0.18	0.26	0.43	0.52	0.63	0.37	0.81	0.30
Latvia	0.08	1.29	1.72	2.55	2.88	3.23	3.19	3.94	4.76	4.66	5.91	6.29	3.38
Lithuania	0.11	0.04	0.72	1.40	1.76	2.23	2.75	2.59	3.70	3.39	4.58	3.62	2.24
Luxembourg	0.83	0.64	2.47	3.04	3.27	3.27	3.57	4.58	4.22	4.59	5.21	5.65	3.45
Malta	0.46	0.07	0.32	0.70	0.25	0.45	0.93	1.49	1.93	1.93	2.39	2.11	1.09
Netherlands	0.40	0.04	0.37	0.32	0.14	0.18	0.61	0.40	0.91	0.47	1.10	3.66	0.72
Poland	0.51	1.34	1.97	2.72	2.89	3.06	3.09	3.40	4.21	5.01	5.06	6.67	3.33
Portugal	0.37	0.12	0.04	0.17	5.05	5.45	5.34	5.18	5.46	4.47	4.39	4.23	3.36
Romania	0.51	1.45	2.97	4.30	6.11	7.25	8.33	9.55	11.11	12.84	14.37	15.64	7.87
Slovakia	0.48	0.92	1.56	2.89	2.60	3.25	4.20	5.20	5.03	6.22	7.28	7.68	3.94
Slovenia	0.95	0.67	0.28	0.52	0.48	0.09	1.97	2.00	1.44	3.95	5.50	3.75	1.80
Spain	0.32	0.20	0.11	0.07	0.50	0.41	0.57	0.80	0.81	1.18	1.05	1.05	0.59
Sweden	0.45	1.54	2.23	2.92	3.16	2.52	4.01	4.36	3.95	4.24	5.33	6.08	3.40
Average	0.42	0.66	0.91	1.30	1.70	1.93	2.31	2.78	3.25	3.63	4.30	4.77	2.33

UNIVERSITY OF LJUBLJANA

Enja Erker

Difference Between Forecasted and Actual Values

Figure 5: Average absolute difference between forecasted and actual values of medical HICP

Enja Erl

Discussion

The findings reveal the ARIMA model's effectiveness for the EU countries in capturing the temporal patterns of medical inflation:

- extentions: dependencies analysis, extending the forecasting horizon, inclusion of exogenous variables, machine learning algorithms,
- alignment: partial alignment with existing studies,
- limitations: complex non-linear relationships not fully captured, appropriate for short or medium-term forecasting.

Conclusion

- Reliable predictions proactive addressing of challenges posed by the rapid development of the healthcare sector
- Implications for policymakers of euro area countries, health insurance companies and healthcare entities

An important contribution to ensuring financially accessible and high-quality healthcare for the residents of the EU

References I

- Atkeson, A. and Ohanian, L. E., 2001. Are Phillips curves useful for forecasting inflation? Federal Reserve bank of Minneapolis quarterly review, 25(1), pp. 2–11.
- 2. Basrak, B., 2022. Essentials of time series Department of Mathematics, University of Zagreb.
- Bikker, J. A., 1998. Inflation forecasting for aggregates of the EU-7 and EU-14 with Bayesian VAR models Journal of Forecasting, 17(2), pp. 147–165.
- Borger, C., Rutherford, T. F. and Won, G. Y., 2008. Projecting long term medical spending growth Journal of Health Economics, 27(1), pp. 69–88.
- Cao, Q., Ewing, B. T. and Thompson, M. A., 2012. Forecasting medical cost inflation rates: model comparison approach *Decision Support Systems*, 53(1), pp. 154–160.
- Choudhary, M. A. and Haider, A., 2012. Neural network models for inflation forecasting: an appraisal Applied Economics, 44(20), pp. 2631–2635.
- 7. Culyer, A. and Newhouse, J, 2003. Handbook of health economics Amsterdam: Elsevier B. V.
- 8. DePamphilis, D. M., 1976. Forecasting medical care expenses Business Economics, 11(4), pp. 21-31.
- 9. Dular, B., 2010. Medicinska inflacija: področje zdravil, magistrska naloga Ekonomska fakulteta, Univerza v Ljubljani.
- 10. European central bank, 2023. Two per cent inflation target. Eurosystem, 26 May 2023.
- 11. Eurostat, 2023. HICP. European Union, 26 May 2023.
- Ewing, B. T., Piette, M. J. and Payne, J. E., 2003. Forecasting medical net discount rates *Journal of Risk and Insurance*, 70(1), pp. 85–95.

Enja Erker

References II

- 13. Faust, J. and Wright, J. H., 2012. Forecasting inflation Handbook of Economic Forecasting 2, pp. 1-18.
- Groel, J. J. J., Paap, R. and Ravazzolo, F., 2013. Real-time inflation forecasting in a changing world *Journal of Business & Economic Statistics*, 31(1), pp. 29–44.
- 15. Hamilton, J. D., 1994. Time series analysis Princeton University Press, New Jersey.
- Karadžić, V. and Pejović, B., 2021. Inflation Forecasting in the Western Balkans and EU: A Comparison of Holt-Winters, ARIMA and NNAR Models Amfiteatru Econ, 23, pp. 517–532.
- Marcellino, M., Stock, J. H. and Watson, M. W., 2006. A comparison of direct and iterated multistep AR methods for forecasting macroeconomic time series *Journal of econometrics*, 135(1-2), pp. 499-526.
- Morgan, S., 2002. Quantifying components of drug expenditure inflation: The British Columbia seniors' drug benefit plan HSR: Health services research, 37(5), pp. 1243–1266.
- 19. Nakamura, E., 2005. Inflation forecasting using a neural networks *Economics Letters*, 86(3), pp. 373-378.
- 20. Rakić, D., 2023. European monetary policy. European Parliament, 26 May 2023.
- 21. Stock, J. H. and Watson, M. W., 1999. Forecasting inflation Journal of Monetary Economics, 44(2), pp. 293-335.
- 22. Stock, J. H. and Watson, M. W., 2010. Modeling inflation after the crisis National Bureau of Economic Research.
- 23. Vijay Kumar, G., 2023. Statistical Tests to Check Stationarity in Time Series. Analytics Vidhya, 26 May 2023.
- 24. Wearing, H. J., 2010. Spectral Analysis in R McMaster University, Hamilton, Ontario.

Enja Erker