Structural FECM: Cointegration in large-scale structural FAVAR models

Anindya Banerjee
(University of Birmingham)

Massimiliano Marcellino
(Bocconi University and CEPR)

Igor Masten
(University of Ljubljana)

Institut za javne financije
18. listopad, 2013
Motivation

• Cointegration in factor-augmented VAR models:
 • FECM - Factor-augmented error-correction model - Banerjee and Marcellino (2009)
 • FECM outperforms the FAVAR and the standard error-correction model in forecasting - (Banerjee, Marcellino and Masten, 2013)

• This paper: Structural FECM - implications of cointegration in large systems of non-stationary variables

• Structural modelling in large systems
 • Bernanke, Boivin and Eliasz (2005) introduce the FAVAR
 • Stock and Watson (2005)
 • Forni, Giannone, Lippi and Reichlin (2009) - fundamentalness of structural representations
 • These and other similar applications work with I(1) data transformed to I(0)
 • Neglected potential cointegration between factors and variables
Contributions of this paper

- Derivation of the FECM from the DFM representation of non-stationary data
- Derivation of the moving-average representation of the FECM - extension of the Granger representation theorem
- Structural FECM: first discussion of long-run identification schemes for non-stationary DFMs
 - Forni et al. (2009), Stock and Watson (2005) - long-run identification in I(0) panel
 - Eickmeier (2009) - I(1) panel and sign restrictions
- Analysis of the importance of the error-correction mechanism in large panels through empirical examples and simulation experiments
Structure of presentation

- Basic idea of the FAVAR
- Representation of the Factor-augmented Error-Correction Model
- Structural analysis:
 - Identification with long-run restrictions
 - Identification with short-run/contemporaneous restrictions (omitted)
- Empirical applications
- Simulation experiments
- Conclusions
Consider that the economy is driven by Y_t and F_t

- Y_t observed, while F_t unobserved by econometrician
- Y_t and F_t follow a VAR
- Many observed I(0) indicator variables X_t
- Assume factor structure

$$X_t = \Lambda^f F_t + \Lambda^y Y_t + e_t$$
FAVAR
BBE estimation

- Two approaches to estimation: likelihood-based Gibbs sampling or two-step approach with principal component analysis
- Two-step approach:
 - Estimate the space spanned by Y_t and F_t by PCA
 - Impose one of the factors to be observed and equal to the FFR, rotate the rest such that it is orthogonal to FFR, denote by \tilde{F}_t
 - Estimate the VAR for $[\tilde{F}_t', Y_t]'$, where FFR ordered last.
 - Estimate impulse responses of the FFR and factors
 - Regress each X_{it} on FFR and rotated factors, plug in the IRs of factors and get IRs of X_{it}
FAVAR - What do we get?

<table>
<thead>
<tr>
<th>Variable</th>
<th>Graph</th>
</tr>
</thead>
<tbody>
<tr>
<td>FFR</td>
<td></td>
</tr>
<tr>
<td>IP - I(1)</td>
<td>![Graph of IP - I(1)]</td>
</tr>
<tr>
<td>CPI - I(1)</td>
<td>![Graph of CPI - I(1)]</td>
</tr>
<tr>
<td>3m TREASURY BILLS - I(0)</td>
<td>![Graph of 3m TREASURY BILLS - I(0)]</td>
</tr>
<tr>
<td>5y TREASURY BONDS - I(0)</td>
<td>![Graph of 5y TREASURY BONDS - I(0)]</td>
</tr>
<tr>
<td>MONEY BASE - I(1)</td>
<td>![Graph of MONEY BASE - I(1)]</td>
</tr>
<tr>
<td>M2 - I(1)</td>
<td>![Graph of M2 - I(1)]</td>
</tr>
<tr>
<td>EXCH RATE YEN - I(1)</td>
<td>![Graph of EXCH RATE YEN - I(1)]</td>
</tr>
<tr>
<td>COMMODITY PR IND - I(1)</td>
<td>![Graph of COMMODITY PR IND - I(1)]</td>
</tr>
<tr>
<td>CAPACITY UTIL RATE - I(0)</td>
<td>![Graph of CAPACITY UTIL RATE - I(0)]</td>
</tr>
<tr>
<td>PERSONAL CONS - I(1)</td>
<td>![Graph of PERSONAL CONS - I(1)]</td>
</tr>
<tr>
<td>DURABLE CONS - I(1)</td>
<td>![Graph of DURABLE CONS - I(1)]</td>
</tr>
<tr>
<td>NONDURABLE CONS - I(1)</td>
<td>![Graph of NONDURABLE CONS - I(1)]</td>
</tr>
<tr>
<td>UNEMPLOYMENT - I(0)</td>
<td>![Graph of UNEMPLOYMENT - I(0)]</td>
</tr>
<tr>
<td>EMPLOYMENT - I(0)</td>
<td>![Graph of EMPLOYMENT - I(0)]</td>
</tr>
<tr>
<td>AVG HOURLY EARNINGS - I(1)</td>
<td>![Graph of AVG HOURLY EARNINGS - I(1)]</td>
</tr>
<tr>
<td>HOUSING STARTS - I(0)</td>
<td>![Graph of HOUSING STARTS - I(0)]</td>
</tr>
<tr>
<td>NEW ORDERS - I(0)</td>
<td>![Graph of NEW ORDERS - I(0)]</td>
</tr>
<tr>
<td>DIVIDENDS - I(0)</td>
<td>![Graph of DIVIDENDS - I(0)]</td>
</tr>
<tr>
<td>CONSUMER EXPECTATIONS - I(0)</td>
<td>![Graph of CONSUMER EXPECTATIONS - I(0)]</td>
</tr>
</tbody>
</table>
Dynamic factor model for non-stationary data

\[X_{it} = \sum_{j=0}^{p} \lambda_{ij} F_{t-j} + \sum_{j=0}^{m} \varphi_{il} c_{t-l} + \varepsilon_{it} \]

\[= \lambda_i(L) F_t + \varphi_i(L) c_t + \varepsilon_{it}, \quad (1) \]

- Observables: \(X_{it}, i = 1, \ldots, N, i = 1, \ldots, T. \)
- \(T, N \) large.
- **Common trends** \(F_t \) - \(r_1 \)-dimensional vector of I(1) factors,
- **Common cycles** \(c_t \) - \(r_2 \)-dimensional vector of I(0) factors,
Dynamic factor model for non-stationary data

- $\lambda_i(L)$ - lag polynomial of order p,
- $\varphi_i(L)$ - lag polynomial of order m,
- $E(\lambda_i\varepsilon_{is}) = E(\varphi_i\varepsilon_{is}) = 0$ for all t, i and s.
- Strict DFM assumption:
 - ε_{it} is allowed to be serially correlated: $\varepsilon_{it} = \gamma_i(L)\varepsilon_{it-1} + \nu_{it}$,
 - $E(\varepsilon_{it}, \varepsilon_{js}) = 0$ for all i, j, t and $s, i \neq j$.
 - Stock and Watson (2005): empirically rejected, but quantitatively of limited importance.
DFM in static form

• Note that

\[\lambda_i (L) F_t = \lambda_{i0} F_t + \lambda_{i1} F_{t-1} + \cdots + \lambda_{ip} F_{t-p} \]

\[= \tilde{\lambda}_{i0} F_t - \tilde{\lambda}_{i1} \Delta F_t - \cdots - \tilde{\lambda}_{ip} \Delta F_{t-p+1} \]

where

\[\tilde{\lambda}_{ik} = \lambda_{ik} + \lambda_{ik+1} + \cdots + \lambda_{ip}, \quad k = 0, \ldots, p \]

• Define also

\[\tilde{\Phi}_i = [\phi_{i0}, \ldots, \phi_{im}]' \]

and

\[\Lambda_i = \tilde{\lambda}_{i0} \]

\[\Phi_i = [-\tilde{\lambda}_{i1}, \ldots, -\tilde{\lambda}_{ip}, \tilde{\Phi}_i] \]

\[G_t = \left[c_t', c_{t-1}', \ldots, c_{t-m}', \Delta F_t', \ldots, \Delta F_{t-p}' \right]' \]
DFM in static form

\[X_t = \Lambda_0 F_t + \Phi G_t + \varepsilon_t \quad (2) \]

- DFM in static form
- \(\varepsilon_t \) serially correlated
DFM in ECM form

- If we remove serial correlation from ε_t we get

$$X_t = \Gamma (L) \Lambda_0 F_t + \Gamma (L) \Phi G_t + \Gamma (L) X_{t-1} + \nu_t \quad (3)$$

- With convenient factorization

$$\Gamma (L) = \Gamma (1) - \Gamma_1 (L) (1 - L) ,$$

- …and some manipulation we can obtain the DFM in ECM form

$$\Delta X_t = -(I - \Gamma(1))(X_{t-1} - \Lambda F_{t-1}) + \Lambda \Delta F_t + \Gamma_1 (L) \Delta F_{t-1} + \nu_t$$

Omitted in the FAVAR

$$\Phi G_t - \Gamma(1) \Phi G_{t-1} + \Gamma_1 (L) \Phi \Delta G_{t-1} - \Gamma_1 (L) \Delta X_{t-1} + \nu_t$$
The VAR process for factors

- F_t are random walks
 \[F_t = F_{t-1} + \varepsilon_t^F \]
- c_t are stationary common cycles \(|\rho| < 1\)
 \[c_t = \rho c_{t-1} + \varepsilon_t^c \]
- ε_t^F and ε_t^c are correlated invertible moving-average processes
- By inverting the moving-average processes for factor innovations, we get a conventional VAR for the factors
 \[
 \begin{bmatrix}
 F_t \\
 G_t
 \end{bmatrix}
 =
 \begin{bmatrix}
 M_{11}(L) & M_{12}(L) \\
 M_{21}(L) & M_{22}(L)
 \end{bmatrix}
 \begin{bmatrix}
 F_{t-1} \\
 G_{t-1}
 \end{bmatrix}
 + Q
 \begin{bmatrix}
 u_t \\
 w_t
 \end{bmatrix}
 \]
- Q accounts for dynamic singularity of G_t
Estimation

- Our DFM uses the same (stricter) set of assumptions as Bai (2004)
- Number of $I(1)$ and total number of factors determined by criteria developed in Bai (2004) and Bai and Ng (2002)
- Space spanned by the $I(1)$ and $I(0)$ factors can be consistently estimated by principal components from the $I(1)$ data in levels
- Given strict DFM assumption remaining parameters estimated equation by equation.
- No generated-regressors problem (Bai, 2004) provided $N \gg T$
- With a simulation experiment we demonstrate that the method successfully retrieves the factor space and impulse responses even in small samples ($T, N < 50$)
Non-stationary data and the FAVAR

- FAVARs in Bernanke et al. (2005), Stock and Watson (2005) and Forni et al. (2009) are estimated on data differenced to I(0)
- Omission of the error-correction term:
 - Non-invertible MA component:
 \[\Delta X_t = \Lambda_0 \Delta F_t + \Phi \Delta G_t + \Gamma (L) \Delta X_{t-1} + \Delta v_t \] (4)
 - Note that the error-correction term has a factor structure:
 - Omitted EC term can be proxied by inclusion of lags of I(0) factors - theoretically infinitely many
 - Problematic in applied work
- Empirical relevance: BBE dataset contains 120 series. 77 non-stationary. Loading to the EC term statistically significantly different from zero in 53 cases.
Moving average representation of the FECM

Granger representation theorem for the FECM

- Rewrite the factors VAR as

\[
\begin{bmatrix}
\Delta F_t \\
\Delta G_t
\end{bmatrix} = \begin{bmatrix}
0 \\
\alpha_M
\end{bmatrix} \begin{bmatrix}
0 & I_r
\end{bmatrix} \begin{bmatrix}
F_{t-1} \\
G_{t-1}
\end{bmatrix}
+ \begin{bmatrix}
M_{11}^*(L) & M_{12}^*(L) \\
M_{21}^*(L) & M_{22}^*(L)
\end{bmatrix} \begin{bmatrix}
\Delta F_{t-1} \\
\Delta G_{t-1}
\end{bmatrix} + Q \begin{bmatrix}
u_t \\
w_t
\end{bmatrix}
\]

- Combine with the error-correction representation of the DFM

\[
\Delta X_t = \tilde{a} \left(X_{t-1} - \Lambda F_{t-1} - \Phi G_{t-1} \right) + \Lambda \Delta F_t + \Phi \Delta G_t \\
+ \Gamma_1 (L) \left(\Lambda \Delta F_{t-1} + \Phi \Delta G_{t-1} \right) - \Gamma_1 (L) \Delta X_{t-1} + \nu_t, \quad (5)
\]
Moving average representation of the FECM

Granger representation theorem for the FECM

Then we can derive the GRT for the FECM as

\[
\begin{bmatrix}
X_t \\
F_t \\
G_t
\end{bmatrix} = \begin{bmatrix}
\Lambda \\
I_{r_1} \\
0_{r_2 \times r_1}
\end{bmatrix} \omega \sum_{i=1}^{t} u_t + C_1(L) \begin{bmatrix}
v_t + [\Lambda, \Psi]Q[u'_t, w'_t]' \\
Q[u_t] \\
Q[w_t]
\end{bmatrix}
\]

Common trends Stationary part

where

\[
\omega = \left[(I_{r_1} - M^*_1(1))\right]^{-1}
\]

has full rank
Identification of structural shocks based on long-run restrictions

- As is standard in SVAR analysis we assume that structural dynamic factor innovations are linearly related to reduced form innovations.

\[
\begin{bmatrix}
\eta_t \\
\mu_t
\end{bmatrix} = H \begin{bmatrix}
u_t \\
w_t
\end{bmatrix}
\]

- \(H\) is full-rank matrix
- \(\eta_t - r_1\) permanent structural dynamic factor innovations
- \(\mu_t - r_2\) transitory structural dynamic factor innovations.
Identification of structural shocks based on long-run restrictions

- From the MA representation we see that the permanent effects are
 \[\Lambda \omega u_t \]

- Assume that the permanent effects of structural shocks are
 \[\Lambda^* \omega^* \eta_t \]

- Consider identifying real and nominal shocks as in Blanchard and Quah (1990).
- Identifying restrictions: nominal shocks have no long-run effect on real variables
- King, Plosser, Stock and Watson (1991) apply this logic to the cointegrated VAR
- We extend to large \(N \)
Identification of structural shocks based on long-run restrictions

- Partition X_t such that N_1 real variables ordered first, remaining $N_2 = N - N_1$ are ordered last.
- Assume $\Lambda^* \omega^*$ lower block diagonal, which implies ...
- ... both Λ^* and ω^* lower block diagonal
Identification of structural shocks based on long-run restrictions

Estimation of Λ^*

- The restricted loading matrix Λ^*:

$$
\Lambda^* = \begin{bmatrix}
\Lambda_{11}^* & 0 \\
\Lambda_{21}^* & \Lambda_{22}^*
\end{bmatrix}
$$

- Λ_{11}^* and Λ_{21}^* estimated as loadings to the first factor - F^r_t - extracted from the whole dataset

- Estimate the residuals ε^r_t from a projection of X_t on F^r_t.

- Λ_{22}^* estimated as loadings to the $(r_1 - 1)$ factors F^n_t - extracted from the lower N_2-dimensional block of ε^r_t.
Identification of structural shocks based on long-run restrictions

Estimation of ω^*

- From the factors VAR

$$\hat{\omega} = [(I_{r_1} - M^*(11))]^{-1}.$$

- Estimate ω^* from the long-run covariance matrix

$$\omega E(u_t^F u_t^{F'}) \omega' = \omega^* E(\eta_t \eta_t') \omega^* \omega' = \omega^* \omega^*$$ \hspace{1cm} (6)

where $\eta_t = [\eta_t^{r'}, \eta_t^{n'}]'$ are the structural innovations and ω^* is lower block diagonal.
Empirical illustration

Data

- Extract 4 factors from data in levels (determined by information criteria of Bai (2004) and Bai and Ng (2002))
- Apply identification scheme from above
- Boostrapped 90% confidence intervals
Empirical example
Impulse responses to permanent real shock
Effect of omitting the ECM term in the FAVAR

Percentage of FAVAR responses outside the FECM confidence intervals

<table>
<thead>
<tr>
<th>Variables</th>
<th>CI 12</th>
<th>24</th>
<th>36</th>
<th>48</th>
<th>60</th>
<th>72</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>67</td>
<td>32.5</td>
<td>55.8</td>
<td>63.6</td>
<td>57.1</td>
<td>48.1</td>
</tr>
<tr>
<td></td>
<td>90</td>
<td>14.3</td>
<td>35.1</td>
<td>40.3</td>
<td>35.1</td>
<td>33.8</td>
</tr>
<tr>
<td>Output</td>
<td>67</td>
<td>5.6</td>
<td>22.2</td>
<td>33.3</td>
<td>27.8</td>
<td>22.2</td>
</tr>
<tr>
<td></td>
<td>90</td>
<td>0.0</td>
<td>5.6</td>
<td>5.6</td>
<td>5.6</td>
<td>5.6</td>
</tr>
<tr>
<td>Employment</td>
<td>67</td>
<td>29.4</td>
<td>58.8</td>
<td>70.6</td>
<td>58.8</td>
<td>35.3</td>
</tr>
<tr>
<td></td>
<td>90</td>
<td>0.0</td>
<td>29.4</td>
<td>41.2</td>
<td>17.6</td>
<td>17.6</td>
</tr>
<tr>
<td>Consumption</td>
<td>67</td>
<td>0.0</td>
<td>20.0</td>
<td>20.0</td>
<td>20.0</td>
<td>20.0</td>
</tr>
<tr>
<td></td>
<td>90</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Orders</td>
<td>67</td>
<td>0.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>50.0</td>
</tr>
<tr>
<td></td>
<td>90</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Exchange rates</td>
<td>67</td>
<td>50.0</td>
<td>75.0</td>
<td>75.0</td>
<td>50.0</td>
<td>25.0</td>
</tr>
<tr>
<td></td>
<td>90</td>
<td>25.0</td>
<td>50.0</td>
<td>50.0</td>
<td>25.0</td>
<td>25.0</td>
</tr>
<tr>
<td>Money</td>
<td>67</td>
<td>55.6</td>
<td>77.8</td>
<td>77.8</td>
<td>88.9</td>
<td>88.9</td>
</tr>
<tr>
<td></td>
<td>90</td>
<td>33.3</td>
<td>66.7</td>
<td>77.8</td>
<td>77.8</td>
<td>77.8</td>
</tr>
<tr>
<td>Prices</td>
<td>67</td>
<td>50.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td></td>
<td>90</td>
<td>50.0</td>
<td>50.0</td>
<td>50.0</td>
<td>50.0</td>
<td>50.0</td>
</tr>
<tr>
<td>Wages</td>
<td>67</td>
<td>60.0</td>
<td>100.0</td>
<td>100.0</td>
<td>93.3</td>
<td>93.3</td>
</tr>
<tr>
<td></td>
<td>90</td>
<td>26.7</td>
<td>80.0</td>
<td>93.3</td>
<td>86.7</td>
<td>53.3</td>
</tr>
</tbody>
</table>
Monte Carlo experiment

- Simulation experiment to analyse the effect of omitting the ECM term in the FAVAR
- Data generating process: FEVM estimated on 77 I(1) variables from BBE dataset
- Effect of:
 - Strength of error-correction: \(\alpha = [-0.25, -0.50, -0.75] \)
 - \(T \) dimension: \(T = [250, 500] \)
 - \(N \) dimension: \(N = [50, 100] \)
Monte Carlo results
Percentage of FAVAR responses outside the FECM confidence intervals

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
<th>(8)</th>
<th>(9)</th>
<th>(10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>-0.50</td>
<td>-0.25</td>
<td>-0.75</td>
<td>-0.50</td>
<td>-0.50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>250</td>
<td>500</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Confidence interval coverage (%)

<table>
<thead>
<tr>
<th>Horizon</th>
<th>67</th>
<th>90</th>
<th>67</th>
<th>90</th>
<th>67</th>
<th>90</th>
<th>67</th>
<th>90</th>
<th>67</th>
<th>90</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>44.6</td>
<td>24.3</td>
<td>30.68</td>
<td>16.6</td>
<td>48.7</td>
<td>29.2</td>
<td>34.4</td>
<td>17.9</td>
<td>21.8</td>
<td>12.8</td>
</tr>
<tr>
<td>12</td>
<td>47.0</td>
<td>26.4</td>
<td>38.06</td>
<td>21.7</td>
<td>47.3</td>
<td>29.0</td>
<td>42.8</td>
<td>24.7</td>
<td>23.5</td>
<td>14.3</td>
</tr>
<tr>
<td>18</td>
<td>48.8</td>
<td>29.3</td>
<td>43.42</td>
<td>25.1</td>
<td>49.8</td>
<td>32.3</td>
<td>43.7</td>
<td>25.1</td>
<td>24.9</td>
<td>14.8</td>
</tr>
<tr>
<td>24</td>
<td>51.3</td>
<td>31.3</td>
<td>45.99</td>
<td>26.9</td>
<td>49.5</td>
<td>30.2</td>
<td>43.0</td>
<td>24.4</td>
<td>25.4</td>
<td>14.9</td>
</tr>
<tr>
<td>36</td>
<td>47.6</td>
<td>28.2</td>
<td>45.93</td>
<td>25.7</td>
<td>46.7</td>
<td>26.4</td>
<td>40.5</td>
<td>22.2</td>
<td>21.7</td>
<td>11.1</td>
</tr>
<tr>
<td>48</td>
<td>43.5</td>
<td>23.9</td>
<td>40.8</td>
<td>21.0</td>
<td>41.5</td>
<td>21.7</td>
<td>39.0</td>
<td>21.0</td>
<td>18.5</td>
<td>8.6</td>
</tr>
<tr>
<td>any</td>
<td>85.9</td>
<td>61.6</td>
<td>76.13</td>
<td>51.9</td>
<td>86.2</td>
<td>66.1</td>
<td>79.7</td>
<td>57.2</td>
<td>41.2</td>
<td>28.7</td>
</tr>
</tbody>
</table>

Average % of periods IRs outside confidence interval

<p>| | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>50.4</td>
<td>36.4</td>
<td>47.9</td>
<td>35.6</td>
<td>49.1</td>
<td>33.8</td>
<td>44.9</td>
<td>31.3</td>
<td>47.9</td>
<td>35.0</td>
</tr>
</tbody>
</table>
Conclusion

- This paper introduces the structural FECM
- We provide a generalization of the Granger representation theorem to large panels, which facilitates the analysis of structural shocks
- First application of the long-run identification scheme to cointegrated large-scale models
- Empirical and simulation evidence show that it is important to account for the error-correction mechanism in the FAVAR
- Responses to permanent real shocks compatible with DSGE evidence
Monetary policy shocks - FAVAR vs FECM

- FFR
- IP - I(1)
- CPI - I(1)
- 3m TREASURY BILLS - I(0)
- 5y TREASURY BONDS - I(0)
- MONEY BASE - I(1)
- M2 - I(1)
- EXCH RATE YEN - I(1)
- COMMODITY PR IND - I(1)
- CAPACITY UTIL RATE - I(0)
- PERSONAL CONS - I(1)
- DURABLE CONS - I(1)
- NONDURABLE CONS - I(1)
- UNEMPLOYMENT - I(0)
- EMPLOYMENT - I(0)
- AVG HOURLY EARNINGS - I(1)
- HOUSING STARTS - I(0)
- NEW ORDERS - I(0)
- DIVIDENDS - I(0)
- CONSUMER EXPECTATIONS - I(0)